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Search for Fourth Generation Neutral Heavy

Leptons

The D� Collaboration1

(July 1995)

A search for fourth generation neutral heavy leptons (�4) in W decays was carried

out with the D� detector at the Fermilab Tevatron at
p
s = 1.8 TeV. The �4 is

assumed to be produced via mixing with the �rst generation neutrino only. We

looked for a three electron �nal state event topology. The data used in this analysis

represent 12.2 pb�1 taken during the 1992 { 1993 run. No candidates were found.
We set a preliminary limit beyond the LEP limit for the considered mixing case on

the jUe4j2 �m�4 plane.
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I. MOTIVATION

Among all possible new particle searches, a fourth generation neutrino draws the most

immediate attention. Taking the mass structure of the known fundamental fermions as

the most natural approach, the neutrino would be the lightest member of a new fourth

generation and thus the most accessible to discovery by present experiments.

II. PHYSICS

We search for a fourth generation sequential Dirac neutrino (�4) in W decays, which

means that the fourth generation neutrino is the simplest extension of the three generation

Standard Model (SM) neutrinos; i.e. it has the same weak interaction properties as the

three generation neutrinos. Measurements at the SLAC Linear Collider (1) and the CERN

LEP Collider (2) rule out the possibility of a �4 at 95 % con�dence level for a mass smaller

than 45 GeV/c2.

If such a fourth generation neutrino exists, it could be massive and mixed to other gener-

ations in analogy with the quark sector. Assuming the mass of the �4 to be less than that

of its charged partner, the channels open for the decay of the �4 are as shown in Fig. 1.

Assuming the �4 mixes with only one other generation, its lifetime can be expressed as (1)
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νl  q′
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FIG. 1. Possible �4 decay channels.

� (�4 ! l�X+) =

�
m�

m�4

�5
� (�! e���)Br(�4 ! l�e+�)

jUl4j2 f
; (1)

where f is a phase space suppression factor for massive �nal state particles which is � 1

for m�4 > 45 GeV.

The production and decay of �4 in p�p collisions via W may be represented (in lowest

order) by the diagram in Fig. 2.

u

d

W

ν4

W

νl  q′

l (e,µ,τ)

l

l  q

Ul4

FIG. 2. Feynman diagram describing production and decay of a massive fourth generation neu-
trino in p�p collisions via W .

The expected event topology is therefore (e.g. for �1 { �4 mixing)

e e e + E/T � 11+2 %

e e � + E/T � 11+2 %

W+ ! e+ �4 !
e e � (jet) + E/T � 7 %

e e + 2 jets � 67 %

The underlined tri { lepton (3l) �nal states are a very distinctive signature consisting

of three charged leptons and missing transverse energy (E/T ) from the neutrino with little

background. The additional two per cent in the eee and ee� channel are from the leptonic

decays of the tau; they are not considered in this analysis. The expected number of produced

trilepton events is given by

N (p�p!W ! �4l! 3l) = � �Br(W ! e�) �
Z
Ldt � fm � j Ul4 j2 (2)

�Br(�4 ! 2l�) � �(3l)
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where �(3l) is the trilepton detection e�ciency, � is the W production cross section, and

fm is the mass threshold factor (3).

fm =

�
1� (m�4 )

2

(mW )2

�2
�
�
1 +

(m�4)
2

2(mW )2

�
(3)

III. ANALYSIS

In this analysis mixing of the �4 with the �rst lepton generation neutrino is assumed with

the search restricted to the eee + E/T channel. Events were selected from data taken with

the D� detector (4) at the Fermilab Tevatron at
p
s = 1.8 TeV. The data used in this

analysis represent 12.2 pb�1 accumulated during the 1992 { 1993 run.

Two triggers (combined as logical .OR.) with the following speci�cations were utilized:

� a single electron trigger requiring an electromagnetic cluster with transverse energy

ET > 20 GeV, passing shape and isolation cuts;

� a dielectron trigger requiring 2 electromagnetic clusters, each with ET > 10 GeV,

passing isolation cuts.

From these data, three-electron events were selected o�ine requiring all three electrons to

have ET > 5 GeV, pseudorapidity j�j < 2:5, matching 1 or 2 drift chamber tracks and to

pass isolation and shape cuts. Only 10 events survive this loose �lter. Subsequently, tighter

quality requirements for the electrons and kinematic cuts on electron ET and event E/T were

used to further separate signal from background.

The kinematic cuts on the electron ET are partly dictated by the ET thresholds of the

utilized triggers. Two sets of o�ine kinematic requirements (again combined by logical

.OR.) are used corresponding to the two triggers. All cuts and their e�ect on the data are

summarized in Table 1. No events survive the analysis cuts.

REQUIREMENTS EVENTS REMAINING

three isolated electromagnetic clusters

which satisfy shower shape cuts,
ET > 5 GeV and pseudorapidity j�j < 2:5

with matched drift chamber tracks 10

electron kinematics:

ET
1=2=3

> 13/13/5 GeV or 5

ET
1=2=3

> 22/5/5 GeV

E/T > 10 GeV 0

TABLE 1. Cuts imposed on data sample and their e�ects.

Backgrounds may be divided into two main classes: physics background produced by

SM processes and backgrounds due to particle misidenti�cation. For this analysis physics

backgrounds (e.g. production of WZ pairs subsequently decaying to eee + E/T ) are neg-

ligible. This leaves background due to misidenti�cation of photons and jets as electrons.
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Our preliminary study indicates that we expect about one background event in our data

sample. A more rigorous estimation of the expected number of background events is under

way.

A combination of Monte Carlo and data was used to determine the detection e�ciencies

for this analysis. Monte Carlo events were generated using a modi�ed version of PYTHIA

(5,6) and the D� version of the GEANT (7) detector simulator. The events were sub-

sequently processed by the o�ine trigger simulator and by the reconstruction software

package.

�4 Geo/Kin Quality Trigger Track. Overall
mass Acc. Cuts E�. Cor. E�.

45.0 15.1�1.1% 69.7�5.2% 92.2�4.5% 74.5�2.9% 7.2�1.3%

50.0 17.6�1.2% 72.0�5.0% 86.4�4.6% 74.7�2.9% 8.2�1.4%

55.0 18.1�1.2% 72.2�5.0% 94.5�4.3% 75.0�3.0% 9.3�1.6%

60.0 19.6�1.3% 71.9�4.9% 87.6�4.5% 75.0�3.0% 9.3�1.6%

65.0 19.1�1.2% 70.2�5.0% 84.9�4.6% 74.6�2.9% 8.5�1.5%

70.0 15.9�1.2% 65.3�5.2% 86.7�4.8% 75.9�3.0% 6.8�1.2%

75.0 12.6�1.1% 65.1�5.5% 81.8�5.4% 75.6�3.0% 5.1�1.0%

80.0 19.0�1.2% 74.4�4.6% 93.8�4.3% 75.1�3.0% 10.0�1.6%

TABLE 2. Detection e�ciencies for each �4 mass. A typical example for the contributions of the
statistical and systematic errors to the total error on the overall e�ciency is (for m�4 = 60 GeV):
9.26 �0.92 (stat) �1.25 (syst) %.

The e�ciencies for each �4 mass are given in Table 2. The number in each column is

calculated with respect to the previous column going from left to right. The columns are

the following:

� Mass �4: Mass of the �4;

� Geo/Kin Acc: Geometric/Kinematic Acceptance for events in % with at least 3 elec-
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FIG. 3. Overall detection e�ciency as a function of �4 mass.

trons required, within the j�j range and passing kinematic cuts;

� Quality Selection: percentage of the events within Geometric/Kinematic Acceptance

ful�lling the electron quality requirements;

� Trigger: percentage of events passing the quality cuts that �re one of the triggers

used;

� Tracking Correction: Correction for known di�erence between Monte Carlo and real

tracking e�ciency for all three electrons combined;

� Overall E�ciency: Final number used for limit calculation (see Fig. 3). The apparent

rise in the overall e�ciency at 80 GeV/c2 �4 mass is coming from the fact that the

W 's that decay to �4 with the mass close to the W mass are on the average heavier

than the mass of the W 's that decay to lower mass �4's because of the W width.

Errors to be considered in this analysis include statistical errors on the Monte Carlo

samples plus systematic errors. Systematic errors arise from the following sources:

� Electron ID:

{ statistical uncertainty on the Monte Carlo sample used to determine the e�ciency

of the electron quality requirements: 0.8% to 2.4% for electron ET from 5 GeV

to 25 GeV.

{ statistical uncertainty in the determination of the tracking e�ciency: 2.4% in

forward detector region, and 2.2% in the central region.

{ statistical uncertainty on the e�ciency requiring drift chamber track match with

calorimeter shower cluster: 1%.

� Di�erences between software trigger and trigger simulator: 4%
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� Uncertainty in integrated luminosity: 5.4 %

The overall systematic error was determined by calculating the e�ciencies using the

upper/lower variations in the systematic errors given above. These errors are included in

Table 2.

IV. CONCLUSION

With the results from the previous sections, we are able to exclude a region (beyond the

existing LEP excluded region) on the jUe4j2-m�4 plane at 95% C.L. as shown in �gure 4.

FIG. 4. D� preliminary 95% C.L. excluded region on the jUe4j2 �m�4 plane for the considered
mixing.

This limit represents the boundary including possible variations as determined by the error

calculation; it was determined using eqn. 2 and the results are preliminary.

From the shape of the limit curve it is evident that the limit is dominated by the phase

space suppression increasing with the �4 mass. This is to be compared to the relatively level

distribution of the overall detection e�ciencies (see Fig. 3). The e�ciencies in general are

dependent on the mixing for each value of m�4 . The increasing decay length (see eqn. 1)

will eventually allow more and more �4 to leave the detector undecayed. However, this

e�ect is not noticeable in this analysis since the decay length of the �4 is well below 0.1 mm

for all values of jUe4j in reach. For a �4 mass > 70 GeV the luminosity for the analysed

data is not su�cient to set a limit.

We showed that this analysis is sensitive to the considered mixing case using only data

taken with the D� detector in the 1992 { 1993 run. For the ongoing 1994 { 1995 run

more than six times the integrated luminosity is expected to be delivered to D�, thereby
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increasing the sensitivity by a signi�cant amount. We also plan to study other �nal state

channels and other mixing cases.
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